Thermal diffusivity measurement of spherical gold nanofluids of different sizes/concentrations
نویسندگان
چکیده
In recent times, nanofluids have been studied by their thermal properties due to their variety of applications that range from photothermal therapy and radiofrequency hyperthermia (which have proven their potential use as coadjutants in these medical treatments for cancer diseases) to next-generation thermo-fluids. In this work, photoacoustic spectroscopy for a specific study of thermal diffusivity, as a function of particle size and concentration, on colloidal water-based gold nanofluids is reported. Gold nanoparticles were synthetized in the presence of hydroquinone through a seed-mediated growth with homogenous sizes and shapes in a range of 16 to 125 nm. The optical response, size and morphology of these nanoparticles were characterized using ultraviolet-visible spectroscopy and transmission electron microscopy, respectively. Thermal characterizations show a decrease in the thermal diffusivity ratio as the nanoparticle size is increased and an enhancement in thermal diffusivity ratio as nanoparticle concentration is added into the nanofluids. Compared with other techniques in the literature such as thermal lens and hot wire method, this photoacoustic technique shows an advantage in terms of precision, and with a small amount of sample required (500 μl), this technique might be suitable for the thermal diffusivity measurement of nanofluids. It is also a promising alternative to classical techniques.
منابع مشابه
Thermal diffusivity measurement for urchin-like gold nanofluids with different solvents, sizes and concentrations/shapes
The thermal properties of nanofluids are an especially interesting research topic because of the variety of potential applications, which range from bio-utilities to next-generation heat-transfer fluids. In this study, photopyroelectric calorimetry for measuring the thermal diffusivity of urchin-like colloidal gold nanofluids as a function of particle size, concentration and shape in water, eth...
متن کاملUltrasonic-aided fabrication of gold nanofluids
A novel ultrasonic-aided one-step method for the fabrication of gold nanofluids is proposed in this study. Both spherical- and plate-shaped gold nanoparticles (GNPs) in the size range of 10-300 nm are synthesized. Subsequent purification produces well-controlled nanofluids with known solid and liquid contents. The morphology and properties of the nanoparticle and nanofluids are characterized by...
متن کاملThermal Diffusivity Measurement of CadmiumSulphide Nanoparticles Prepared byγ-Radiation Technique
In this study we applied thermal lens (TL) technique to study the effect of size on thermal diffusivity of cadmium sulphide (CdS) nanofluid prepared by using γ-radiation method containing particles with different sizes. In TL experimental set up a diode laser of wavelength 514 nm and intensity stabilized He-Ne laser were used as the excitation source and the probe beam respectively, respectivel...
متن کاملMeasurement Thermal Conductivity and Thermal Diffusivity of Chromium Nanofluids
In this study, nanofluids of Chromium (Cr) in water, Ethylene Glycol and Ethanol have been prepared using single step method. The thermal conductivity and diffusivity of these nanofluids were measured via hot wire-photothermal deflection technique. Based on finite difference method (FDM) temperature distribution and photothermal deflection caused by the hot wire inside nanofluids was obtained. ...
متن کاملStudy of the effect of particles size and volume fraction concentration on the thermal conductivity and thermal diffusivity of Al2O3 nanofluids
In this study we present new data for the thermal conductivity enhancement in four nanofluids containing 11, 25, 50, and 63 nm diameter Aluminum oxide (Al2O3) nanoparticles in distilled water. The nanofluids were prepared using single step method (that is, by dispersing nanoparticle directly in base fluid) which was gathered in ultrasonic device for approximately 7 h. The transient hot-wire las...
متن کامل